Antibiotic discovery with machine learning

Antibiotic discovery with machine learning

Artificial intelligence finds candidate peptide antibiotics in the human gut microbiome.

Drug-resistant bacterial infections kill 1.27 million people worldwide each year3,4, and without new classes of antimicrobial therapies, morbidity and mortality due to severe infections will increase: deaths caused by untreatable infections are projected to reach 10 million annually by 2050. The World Health Organization has highlighted five kinds of bacteria, called the ESKAPE pathogens, as priority pathogens that often display multi-drug resistance.

This is a preview of subscription content

Access options

Subscribe to Journal

Get full journal access for 1 year

99,00 €

only 8,25 € per issue

Tax calculation will be finalised during checkout.

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: AI enables antibiotic discovery in the gut microbiome.

References

  1. Magana, M. et al. Lancet Infect. Dis. 20, e216–e230 (2020).

    CAS 
    Article 

    Google Scholar
     

  2. Ma, Y. et al. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01226-0 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  3. Der Torossian Torres, M. & de la Fuente-Nunez, C. Chem. Commun. (Camb.) 55, 15020–15032 (2019).

    Article 

    Google Scholar
     

  4. Antimicrobial Resistance Collaborators. Lancet 399, 629–655(2022).

  5. Porto, W. F. et al. Nat. Commun. 9, 1490 (2018).

    Article 

    Google Scholar
     

  6. Stokes, J. M. et al. Cell 181, 475–483 (2020).

    CAS 
    Article 

    Google Scholar
     

  7. Das, P. et al. Nat. Biomed. Eng. 5, 613–623 (2021).

    CAS 
    Article 

    Google Scholar
     

  8. Torres, M. D. T., Melo, M. C. R., Crescenzi, O., Notomista, E. & de la Fuente-Nunez, C. Nat. Biomed. Eng. 6, 67–75 (2022).

    Article 

    Google Scholar
     

  9. Sberro, H. et al. Cell 178, 1245–1259.e14 (2019).

    CAS 
    Article 

    Google Scholar
     

Download references

Author information

Affiliations

  1. Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

    Cesar de la Fuente-Nunez

  2. Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA

    Cesar de la Fuente-Nunez

  3. Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA

    Cesar de la Fuente-Nunez

Corresponding author

Correspondence to
Cesar de la Fuente-Nunez.

Ethics declarations

Competing interests

The author declares no competing interests.

About this article

Cite this article

de la Fuente-Nunez, C. Antibiotic discovery with machine learning.
Nat Biotechnol (2022). https://doi.org/10.1038/s41587-022-01327-w

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/s41587-022-01327-w

Read More

Author: admin