m6A RNA modifications are measured at single-base resolution across the mammalian transcriptome

m6A RNA modifications are measured at single-base resolution across the mammalian transcriptome

Abstract

Functional studies of the RNA N6-methyladenosine (m6A) modification have been limited by an inability to map individual m6A-modified sites in whole transcriptomes. To enable such studies, here, we introduce m6A-selective allyl chemical labeling and sequencing (m6A-SAC-seq), a method for quantitative, whole-transcriptome mapping of m6A at single-nucleotide resolution. The method requires only ~30 ng of poly(A) or rRNA-depleted RNA. We mapped m6A modification stoichiometries in RNA from cell lines and during in vitro monocytopoiesis from human hematopoietic stem and progenitor cells (HSPCs). We identified numerous cell-state-specific m6A sites whose methylation status was highly dynamic during cell differentiation. We observed changes of m6A stoichiometry as well as expression levels of transcripts encoding or regulated by key transcriptional factors (TFs) critical for HSPC differentiation. m6A-SAC-seq is a quantitative method to dissect the dynamics and functional roles of m6A sites in diverse biological processes using limited input RNA.

This is a preview of subscription content

Access options

Subscribe to Journal

Get full journal access for 1 year

99,00 €

only 8,25 € per issue

Tax calculation will be finalised during checkout.

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Data availability

Data have been deposited in the NCBI Gene Expression Omnibus (GEO) and are accessible through GEO series accession number GSE162357.

Code availability

For m6A-SAC-seq data processing, the code is available in the following GitHub repositories: https://github.com/shunliubio/m6A-SAC-seq and https://github.com/CTLife/m6A-SAC-seq.

References

  1. Frye, M., Harada, B. T., Behm, M. & He, C. RNA modifications modulate gene expression during development. Science 361, 1346–1349 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  2. Roundtree, I. A., Evans, M. E., Pan, T. & He, C. Dynamic RNA modifications in gene expression regulation. Cell 169, 1187–1200 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  3. Dominissini, D. et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485, 201–206 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  4. Meyer, K. D. et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149, 1635–1646 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  5. Chen, K. et al. High-resolution N6-methyladenosine (m6A) map using photo-crosslinking-assisted m6A sequencing. Angew. Chem. Int. Ed. Engl. 54, 1587–1590 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  6. Linder, B. et al. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat. Methods 12, 767–772 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  7. Molinie, B. et al. m6A-LAIC-seq reveals the census and complexity of the m6A epitranscriptome. Nat. Methods 13, 692–698 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  8. McIntyre, A. B. R. et al. Limits in the detection of m6A changes using MeRIP/m6A-seq. Sci. Rep. 10, 6590 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  9. Meyer, K. D. DART-seq: an antibody-free method for global m6A detection. Nat. Methods 16, 1275–1280 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  10. Garcia-Campos, M. A. et al. Deciphering the “m6A Code” via antibody-independent quantitative profiling. Cell 178, 731–747 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  11. Zhang, Z. et al. Single-base mapping of m6A by an antibody-independent method. Sci. Adv. 5, eaax0250 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  12. Zhang, Y. et al. MazF cleaves cellular mRNAs specifically at ACA to block protein synthesis in Escherichia coli. Mol. Cell 12, 913–923 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  13. Wang, Y., Xiao, Y., Dong, S., Yu, Q. & Jia, G. Antibody-free enzyme-assisted chemical approach for detection of N6-methyladenosine. Nat. Chem. Biol. 16, 896–903 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  14. Shu, X. et al. A metabolic labeling method detects m6A transcriptome-wide at single base resolution. Nat. Chem. Biol. 16, 887–895 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  15. Liu, N. et al. Probing N6-methyladenosine RNA modification status at single nucleotide resolution in mRNA and long noncoding RNA. RNA 19, 1848–1856 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  16. Aschenbrenner, J. et al. Engineering of a DNA polymerase for direct m6A sequencing. Angew. Chem. Int. Ed. Engl. 57, 417–421 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  17. Hong, T. et al. Precise antibody-independent m6A identification via 4SedTTP-involved and FTO-assisted strategy at single-nucleotide resolution. J. Am. Chem. Soc. 140, 5886–5889 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  18. Liu, W. et al. Identification of a selective DNA ligase for accurate recognition and ultrasensitive quantification of N6-methyladenosine in RNA at one-nucleotide resolution. Chem. Sci. 9, 3354–3359 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  19. Xiao, Y. et al. An elongation- and ligation-based qPCR amplification method for the radiolabeling-free detection of locus-specific N6-methyladenosine modification. Angew. Chem. Int. Ed. Engl. 57, 15995–16000 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  20. O’Farrell, H. C., Musayev, F. N., Scarsdale, J. N. & Rife, J. P. Binding of adenosine-based ligands to the MjDim1 rRNA methyltransferase: implications for reaction mechanism and drug design. Biochemistry 49, 2697–2704 (2010).

    PubMed 

    Google Scholar
     

  21. O’Farrell, H. C., Pulicherla, N., Desai, P. M. & Rife, J. P. Recognition of a complex substrate by the KsgA/Dim1 family of enzymes has been conserved throughout evolution. RNA 12, 725–733 (2006).

    PubMed 
    PubMed Central 

    Google Scholar
     

  22. Shu, X. et al. N6-allyladenosine: a new small molecule for RNA labeling identified by mutation assay. J. Am. Chem. Soc. 139, 17213–17216 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  23. Schwartz, S. et al. Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5′ sites. Cell Rep 8, 284–296 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  24. Liu, J. et al. A METTL3–METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat. Chem. Biol. 10, 93–95 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  25. Kortel, N. et al. Deep and accurate detection of m6A RNA modifications using miCLIP2 and m6Aboost machine learning. Nucleic Acids Res. 49, e92 (2021).

  26. Wang, X. & He, C. Dynamic RNA modifications in posttranscriptional regulation. Mol. Cell 56, 5–12 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  27. Wang, X. et al. N6-Methyladenosine-dependent regulation of messenger RNA stability. Nature 505, 117–120 (2014).

    PubMed 

    Google Scholar
     

  28. Mao, Y. et al. m6A in mRNA coding regions promotes translation via the RNA helicase-containing YTHDC2. Nat. Commun. 10, 5332 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  29. Wang, X. et al. N6-Methyladenosine modulates messenger RNA translation efficiency. Cell 161, 1388–1399 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  30. Zhang, Z. et al. Genetic analyses support the contribution of mRNA N6-methyladenosine (m6A) modification to human disease heritability. Nat. Genet. 52, 939–949 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  31. Van Nostrand, E. L. et al. Principles of RNA processing from analysis of enhanced CLIP maps for 150 RNA binding proteins. Genome Biol. 21, 90 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  32. Van Nostrand, E. L. et al. A large-scale binding and functional map of human RNA-binding proteins. Nature 583, 711–719 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  33. Patil, D. P. et al. m6A RNA methylation promotes XIST-mediated transcriptional repression. Nature 537, 369–373 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  34. Huang, H. et al. Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat. Cell Biol. 20, 285–295 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  35. Liu, N. et al. N6-Methyladenosine alters RNA structure to regulate binding of a low-complexity protein. Nucleic Acids Res. 45, 6051–6063 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  36. Zhou, K. I. et al. Regulation of co-transcriptional pre-mRNA splicing by m6A through the low-complexity protein hnRNPG. Mol. Cell 76, 70–81 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  37. Alarcon, C. R. et al. HNRNPA2B1 is a mediator of m6A-dependent nuclear RNA processing events. Cell 162, 1299–1308 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  38. Xiao, W. et al. Nuclear m6A reader YTHDC1 regulates mRNA splicing. Mol. Cell 61, 507–519 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  39. Kuppers, D. A. et al. N6-Methyladenosine mRNA marking promotes selective translation of regulons required for human erythropoiesis. Nat. Commun. 10, 4596 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  40. Zhu, Y. P., Thomas, G. D. & Hedrick, C. C. 2014 Jeffrey M. Hoeg Award Lecture: Transcriptional control of monocyte development. Arterioscler. Thromb. Vasc. Biol. 36, 1722–1733 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  41. Friedman, A. D. Transcriptional control of granulocyte and monocyte development. Oncogene 26, 6816–6828 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  42. Scott, C. L. & Omilusik, K. D. ZEBs: novel players in immune cell development and function. Trends Immunol. 40, 431–446 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  43. Hock, H. et al. Tel/Etv6 is an essential and selective regulator of adult hematopoietic stem cell survival. Genes Dev. 18, 2336–2341 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  44. Yildirim, E. et al. Xist RNA is a potent suppressor of hematologic cancer in mice. Cell 152, 727–742 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  45. Cui, H. et al. Long noncoding RNA Malat1 regulates differential activation of macrophages and response to lung injury. JCI Insight 4, e124522 (2019).

  46. Su, R. et al. R-2HG exhibits anti-tumor activity by targeting FTO/m6A/MYC/CEBPA signaling. Cell 172, 90–105 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  47. Ramirez, R. N. et al. Dynamic gene regulatory networks of human myeloid differentiation. Cell Syst. 4, 416–429 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  48. Raghav, P. K. & Gangenahalli, G. Hematopoietic stem cell molecular targets and factors essential for hematopoiesis. J. Stem Cell Res. Ther. 8, 441 (2018).


    Google Scholar
     

  49. Santoni, G. et al. The role of transient receptor potential vanilloid type-2 ion channels in innate and adaptive immune responses. Front. Immunol. 4, 34 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  50. Coppin, E. et al. Dok1 and Dok2 proteins regulate cell cycle in hematopoietic stem and progenitor cells. J. Immunol. 196, 4110–4121 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  51. Wei, C. M. & Moss, B. Nucleotide sequences at the N6-methyladenosine sites of HeLa cell messenger ribonucleic acid. Biochemistry 16, 1672–1676 (1977).

    CAS 
    PubMed 

    Google Scholar
     

  52. Schibler, U., Kelley, D. E. & Perry, R. P. Comparison of methylated sequences in messenger RNA and heterogeneous nuclear RNA from mouse L cells. J. Mol. Biol. 115, 695–714 (1977).

    CAS 
    PubMed 

    Google Scholar
     

  53. Li, X. et al. Base-resolution mapping reveals distinct m1A methylome in nuclear- and mitochondrial-encoded transcripts. Mol. Cell 68, 993–1005 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  54. Su, R. et al. MiR-181 family: regulators of myeloid differentiation and acute myeloid leukemia as well as potential therapeutic targets. Oncogene 34, 3226–3239 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  55. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 3 (2011).


    Google Scholar
     

  56. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  57. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS 

    Google Scholar
     

  58. Koboldt, D. C. et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 22, 568–576 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  59. Ramirez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160–W165 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  60. Zhang, Y. et al. Model-based analysis of ChIP–seq (MACS). Genome Biol. 9, R137 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  61. Liao, Y., Smyth, G. K. & Shi, W. The subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res. 41, e108 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  62. Edupuganti, R. R. et al. N6-Methyladenosine (m6A) recruits and repels proteins to regulate mRNA homeostasis. Nat. Struct. Mol. Biol. 24, 870–878 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  63. Chen, C. Y., Ezzeddine, N. & Shyu, A. B. Messenger RNA half-life measurements in mammalian cells. Methods Enzymol. 448, 335–357 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  64. de Hoon, M. J., Imoto, S., Nolan, J. & Miyano, S. Open source clustering software. Bioinformatics 20, 1453–1454 (2004).

    PubMed 

    Google Scholar
     

  65. Saldanha, A. J. Java Treeview—extensible visualization of microarray data. Bioinformatics 20, 3246–3248 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  66. Futschik, M. E. & Carlisle, B. Noise-robust soft clustering of gene expression time-course data. J. Bioinform. Comput. Biol. 3, 965–988 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  67. Yu, G. et al. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  68. Raudvere, U. et al. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 47, W191–W198 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  69. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  70. Han, H. et al. TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions. Nucleic Acids Res. 46, D380–D386 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  71. Shen, S. et al. rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-seq data. Proc. Natl Acad. Sci. USA 111, E5593–5601 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  72. Liu, N. et al. N6-Methyladenosine-dependent RNA structural switches regulate RNA–protein interactions. Nature 518, 560–564 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

Download references

Acknowledgements

We thank P. Faber of the University of Chicago Genomics Facility for sequencing support and Q. Jin for helping with UHPLC–QQQ–MS/MS. We also thank T. Wu, H.L. Shi and Z.J. Zhang for discussions. L.H. was supported by a Chicago Fellows Program, Chicago Biomedical Consortium (CBC) postdoctoral award and a Leukemia & Lymphoma Society Special Fellow Award. B.T.H. was supported by an NIH fellowship (F32 CA221007). We thank support from National Institutes of Health (NIH) grants RM1 HG008935 (C.H.), R01 GM126553 (M.C.), R01 CA243386 (J.C.), R01 CA214965 (J.C.), R01 CA236399 (J.C.), R01 CA211614 (J.C.) and R01 DK124116 (J.C.), The Simms/Mann Family Foundation (J.C.) and The Margaret Early Medical Research Trust (R.S.). M.C. is supported by a Sloan Foundation Research Fellowship and a Human Cell Atlas Seed Network grant from the Chan Zuckerberg Initiative. C.H. is an investigator of the Howard Hughes Medical Institute. J.C. is a Leukemia & Lymphoma Society (LLS) Scholar.

Author information

Author notes

  1. These authors contributed equally: Lulu Hu, Shun Liu, Yong Peng, Ruiqi Ge, Rui Su.

  2. These authors jointly supervised this work: Chuan He, Jianjun Chen, Mengjie Chen, Lulu Hu.

Affiliations

  1. Department of Chemistry, The University of Chicago, Chicago, IL, USA

    Lulu Hu, Shun Liu, Yong Peng, Ruiqi Ge, Bryan T. Harada, Qing Dai, Jiangbo Wei, Lisheng Zhang, Ziyang Hao, Liangzhi Luo, Huanyu Wang, Yuru Wang & Chuan He

  2. Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA

    Lulu Hu, Shun Liu, Yong Peng, Ruiqi Ge, Bryan T. Harada, Qing Dai, Jiangbo Wei, Lisheng Zhang, Ziyang Hao, Liangzhi Luo, Huanyu Wang, Yuru Wang & Chuan He

  3. Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA

    Lulu Hu, Shun Liu, Yong Peng, Ruiqi Ge, Bryan T. Harada, Qing Dai, Jiangbo Wei, Lisheng Zhang, Ziyang Hao, Liangzhi Luo, Huanyu Wang, Yuru Wang & Chuan He

  4. Fudan University Institutes of Biomedical Sciences, Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Shanghai Medical College of Fudan University, Shanghai, China

    Lulu Hu

  5. Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL, USA

    Shun Liu, Yong Peng & Mengjie Chen

  6. Department of Human Genetics, The University of Chicago, Chicago, IL, USA

    Shun Liu, Yong Peng & Mengjie Chen

  7. Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, USA

    Rui Su & Jianjun Chen

  8. Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA

    Chamara Senevirathne & Minkui Luo

  9. Program of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY, USA

    Minkui Luo

  10. City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA, USA

    Jianjun Chen

  11. Gehr Family Center for Leukemia Research, City of Hope, Duarte, CA, USA

    Jianjun Chen

Contributions

L.H. and C.H. conceived the study. M.C. supervised the bioinformatic analysis. J.C. supervised the sample preparation for HSPC differentiation into monocytes. L.H. designed the experiments. S.L. and Y.P. performed the bioinformatic analysis. L.H. and R.G. prepared the libraries. R.S. prepared the samples for HSPC differentiation with J.C. C.S. synthesized the allyl-SAM cofactor under the supervision of M.L. B.T.H. edited the manuscript. Q.D. synthesized the RNA probes, a6A and a6m6A standards. J.W. and H.W. helped with RNA sample preparation. L.Z. helped with method design. Z.H. helped with cell culture. L.L. and Y.W. helped with FTO purification. L.H., S.L, Y.P., M.C. and C.H. wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to
Lulu Hu, Mengjie Chen, Jianjun Chen or Chuan He.

Ethics declarations

Competing interests

A patent application for m6A-SAC-seq has been filed by the University of Chicago. C.H. is a scientific founder and a scientific advisory board member of Accent Therapeutics, Inc., and Inferna Green, Inc. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Biotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

About this article

Cite this article

Hu, L., Liu, S., Peng, Y. et al. m6A RNA modifications are measured at single-base resolution across the mammalian transcriptome.
Nat Biotechnol (2022). https://doi.org/10.1038/s41587-022-01243-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41587-022-01243-z

Read More

Author: admin